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Best Practices Guide for Utility-Scale 
PV Monitoring with Intelligent 
Diagnostics Using String-Level I-V 
Curves and Machine Learning  

Today, 121 GW Photovoltaic (PV) plants are installed and 
operated in the USA, which is 11% of the total installed 
power capacity. Of these, 75% were installed in the last 
five years, the highest growth rate among all power 
sources. Therefore, PV plants need to be monitored to 
confirm that plant power output, yield, and life expectancy 
are within the expected limits, which ensures the PV 
owner's financial goals are attainable. Industry-standard 
monitoring methods collect and analyze the inverter time 
series data, typically currents and voltages. However, 
inverter level monitoring lacks granularity, detection 
sensitivity, and localization. Therefore, plant operators 
must resort to occasional aerial infrared (IR) imaging to 
detect malfunctioning strings and modules. However, IR 
imaging cannot provide failure root cause, degradation 
rates, nor detect mismatch losses, which can grow to be as 
large as 20% over time [1]. A potential solution is 
performing advanced diagnostics at the string or module 
level through in-situ I-V characteristic measurements, 

from which a lot of information can be extracted [2]. 
Anticipated advantages include continuous automated 
failure diagnostics performed on strings and modules, 
improved localization of faults, more effective preventive 
maintenance to reduce downtime and increase energy 
production, in-situ degradation rate estimation for product 
warranty monitoring and reduction of LCOE and risk due 
to increased availability and power generation as a result 
of proactive O&M activities. 

This guide is intended to help PV plant owners, 
engineering, procurement, and construction (EPC) firms, 
monitoring service providers, and other industry 
stakeholders by providing important findings and lessons 

[1] W.G. Shin et al, Currentflow analysis ofpvarrays under voltage 
mismatchconditions and an inverterfailure ApplSci, 9 
(2019),10.3390/app9235163 
[2] J. Walters, et al"Experimental Methods to Replicate Power Loss of PV 
Modules in the Field for the Purpose of Fault Detection Algorithm 
Development," IEEE 46th PVSC, Chicago, IL, USA, 2019, pp. 1410-1413 

   

Figure 1: The popular infrared imaging technique is good 
at detecting hotspots but under certain conditions only. 
The top and bottom are IR images of a string showing a 
specific PV module. The module showed no signs of hot 
spots when string was operated at MPPT. But, the same 
module showed signs of checkered pattern hotspots when 
operated at off-MPP. Photo was taken at FSEC test site. 
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learned in designing a monitoring system to detect PV 
faults and is the culmination of a project in which the 
simulation, hardware, and indoor and field experiments 
were conducted at a test site and a utility PV plant. In 
addition, this guide offers research findings, information, 
and recommendations for the earliest detection of PV 
faults, advanced monitoring practices, cost-economic 
benefits, LCOE analysis, and comparing different 
monitoring approaches and their impact on fault detection. 
Also, the checklists mentioned throughout the guide help 
the PV monitoring stakeholders with critical information 
when designing and installing string-level I-V curve-
based monitoring equipment.  

Levels of Monitoring 
Four levels of monitoring can be implemented at a PV 
plant. Of these, measuring DC and AC parameters at the 
PV array (or inverter) level is a conventional approach, 
and is required by the IEC-61724 standard. The remaining 
three are options available to PV plant stakeholders and 
are not well documented, researched, and are yet to be 
fully commercialized. The details of the four monitoring 
levels are:  

1. Inverter DC and AC parameters (time series): Apart 
from performing DC-to-AC energy conversion, 
inverters are fully equipped to measure and report the 
PV array's input DC and output AC parameters to the 
PV plant's operators. It is time series data. The 
measurement frequency is a choice of the PV plant. 
For instance, IEC-61724 categorizes PV plants into 
three categories: A, B, and C, each with a 
measurement frequency of <1 min, 1-15 min, and 15-
60 min, respectively. Irrespective of the measurement 
frequency, inverter data provides little or no 
information about the faults in the PV array. It is the 
lowest-cost monitoring configuration as the data 
acquisition system and measurement devices are 
typically connected only to the inverter. It is the most 
widely accepted monitoring setup. Using such a 
system, PV plant operators raise a maintenance ticket 
only when they notice a minimum 10% loss in the DC 
or AC parameters. Since 2010, commercial inverter 
manufacturers have been introducing their versions of 
"smart inverters," with varied differences between 

manufacturer and model. Today, equipping "smart 
inverters" with state-of-the-art capabilities to measure 
the characteristic I-V curves of the PV array or sub-
array is expected. However, with a limited number of 
I-V curve tracing inputs per inverter, it may not be 
able to measure the I-V characteristics of individual 
strings and still lacks some granularity and 
localization.   

2. Combiner current transducer (time series): A 
combiner is an electrical junction of the strings, 
usually 12 to 25, feeding current to a recombiner or 
inverter. A current measuring device is integrated into 
the combiner with the intent to measure and collect 
combiner current and analyze the information to 
detect faults in individual strings or a group of strings. 
It is a low-cost monitoring setup. The measurement 
frequency differs based on the category of PV plant. 
Plant operators raise maintenance tickets when they 
notice a minimum of 8-10% loss in the current.    

3. String voltage and current (time series or I-V curve): 
Monitoring each string is a state-of-the-art approach 
to effectively detect string level faults. Although a 
usual practice is monitoring the MPP current and 
voltage parameters, this more advanced approach 
involves measuring the characteristic I-V curve of the 
string. The former needs no special equipment except 
the integration of the devices. However, the latter 
approach needs additional arrangements, that is, a 1-
2 second isolation from the PV array with the help of 
switches for momentary disconnection and 
reconnection. The I-V curve measurement is usually 
quick and fast, taking less than a second. However, 
compared to the previous methods, it requires 
measuring hardware installed at the string/combiner 
level. Still, it offers the advantage of near real-time 
detection of faults in the string leading to early 
prevention or correction measures and low losses. 
This project's extensive simulation, experimental 
tests, cost-benefit, and LCOE analysis showed that 
string-level monitoring is optimal for detecting 
and locating the most PV faults without requiring 
hardware on every single module. 

4.  Module voltage and current (time series or I-V 
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curve): Measuring module level current and voltage 
or characteristic I-V curve is the next level in the 
monitoring. It is expensive but maybe the default 
approach for micro-inverter applications as they are 
inherently present in module-level devices. 

Data management & engineering 
Proceeding from low to high-granularity monitoring 
levels means measuring, collecting, storing, retrieving, 
and analyzing larger amounts of data. Therefore, proper 
planning is needed to ensure the reliability of the data 
processing at all stages. 

• Type of data: Two types of data are usually collected 
from the PV plants. The usual time series data 
consists of discrete measurements at each time-stamp 
(for example, inverter DC and AC parameters). 
However, I-V curve data is represented through a 2-
D array of measurement values (of a few hundred or 
thousand points) at each time stamp. Therefore, the 
correct database is necessary to store and retrieve both 
time-series and I-V data. Time series data can be 
stored in any relational database management system 
(RDBMS), time-series database (TSDS), among 
other options. However, storing I-V data requires a 
relational database. Attempting to store HRMS data 
in a non-RDBMS server could lead to irretrievable 

data loss. 

• Storing and Merging: Data collected from the field 
may not be integrated into the same database or 
database tables: inverter data may go to one server, 
and I-V curve data to another. However, ensuring 
that all data storing servers are synchronized to a 
common NTP (network time protocol) server clock 
or GPS clock is critical to the monitoring system. 
Otherwise, merging data from different servers with 
non-synchronized time stamps could lead to 
erroneous observations, results, analyses, and 
judgments.  

• Frequency: IEC-61724 stipulates measurement 
frequencies based on the category of PV plants. This 
applies to conventional measurements like inverter 
parameters (time series data) and meteorological 
parameters. However, no standards exist for I-V data 
(I-V curves). Our work suggests a 40 – 60 min 
measurement frequency at medium to high irradiance 
is sufficient for measuring I-V curves. However, 
higher frequency measurement leads to more 
operational losses, and the I-V curve measuring 
equipment may wear unnecessarily.  

• Filtering/Correction: Data filtering is essential to 
dropping unreliable data before performing analysis. 
Data collected during dynamic weather conditions, 
severe cloudy days, and due to faulty sensors is 
unreliable and needs to be detected and dropped. 
Some techniques, such as sky stability filters, daily 
per-unit filtering [3], or machine learning (ML) 
classifier (of normal and abnormal I-V curves) [4], 
can help filter inverter and I-V curve data. For 
example, a sky stability filter can effectively identify 
and drop dynamic weather data. For example, an I-V 
curve = measurement may be valid only if the 
sunlight conditions do not change more than a 
specified amount  (~15 W/m2) for one minute before 
and after the I-V curve measurement. Additionally, 
comparing daily per-unit profiles of related 

[3]. M. Matam et al, "Detecting Abnormal Profiles in the Database of a PV 
plant Through Programmatic Comparison of Per Unit Profiles," 47th IEEE 
PVSC, Calgary, OR, 2020, pp. 1534-1536.  
[4]. M. Matam, et al, "An Algorithm for Filtering the Time-series I-V curves 
of a PV plant," 48th IEEE PVSC, June 20-25, 2021.  

 

Figure 2: The addition of sring-Level I-V curve tracers 
inline with each string enable remote intelligent 
diagnostics of PV  faults in the cloud using machine 
learning techniques. 
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parameters (for example, inverter DC current, AC 
power, and POA irradiance) can help identify 
unreliable data. After performing data filtering, 
correcting the I-V curve data for irradiance and 
temperature will enable comparisons with previous 
years or peer data. 

• Processing and Model Training: neural networks are 
powerful tools to model I-V data. We have 
implemented convolutional neural networks (CNNs) 
or long short-term memory (LSTM) neural networks 
[5,6]. It is a four-step process, and newer ML 
algorithms can leverage the existing approach. First, 
the irradiance and temperature corrected I-V curves 
are resampled with standard voltage array data. This 
helps to process I-V curves along the standard voltage 
array. Second, resampled I-V curves will be 
normalized to have a normal range of [0,1]. Third, 
NN predictors are calculated for all the I-V curves. 
Fourth, the model is trained and validated. The model 
considered in our project reported up to 96% 
detection accuracy at all irradiance conditions given 
the following PV faults:  1-module and 6-module 
partial soiling, cracked cells, cell interconnect 
breakage and increased series resistance in the string. 
Also, synthetic data can be used to augment the 
training dataset.  

Diagnostic performance 
tradeoffs 
The ability to detect and classify faults significantly 
differs at the inverter, combiner, string, and module 
levels. In addition, it varies based on the fault type and 
magnitude of power loss.      

• Soiling is one of the most commonly occurring power 
loss events. The magnitude varies based on the plant's 
geographic location, climatic conditions (including 
precipitation and humidity), wind speed, and soil 
type. I-V curve data helps to know the soiling pattern 
across the PV array, the subsequent reduction in 
soiling due to precipitation, and assists in scheduling 
module cleaning. In addition, the data could help 
determine if PV array soiling is following a pattern, 
such as affecting mainly outer edge modules or 
modules in a specific outer edge (north, south, east, 
or west). Accordingly, cleaning can be directed to a 
particular section of PV modules and eliminate or 
reduce unnecessary cleaning activities. I-V curve data 
can accurately detect initial and severe soiling 
conditions. On the other hand, low-resolution inverter 
data cannot detect soiling unless it causes at least a 
10% power loss. 

• Cell cracks are pertinent problems for PV plants. 
They might occur in cell fabrication, module 
manufacturing, transportation, and installation. 
During PV plant operation, cell cracks could be 
caused by high-speed winds, hail storms, snow 
loading, and other weather-related stresses. In 
addition, cracks cause low power losses, making them 
impossible to detect using conventional inverter data. 
A characteristic I-V curve, collected at the module or 
string level, could help detect cracks after they have 
existed for some time. However, imaging techniques 
like electroluminescence (EL) and ultraviolet 
fluorescence (UVF) can detect cracks much earlier, 
but special equipment is needed to perform imaging, 
substantially increasing the cost. 

• Cell interconnect failures usually occur at the cell 
edges, on the cells due to delamination, ribbon 
shunting, and string-interconnect failure. Prolonged 

[5]. M. W. Hopwood, et al, "Neural Network-Based Classification of String-
Level IV Curves From Physically-Induced Failures of Photovoltaic 
Modules," in IEEE Access, vol. 8, pp. 161480-161487, 2020 
[6] Hopwood, M.W.; Stein, J.S.; Braid, J.L.; Seigneur, H.P. Physics-Based 
Method for Generating Fully Synthetic IV Curve Training Datasets for 
Machine Learning Classification of PV Failures. Energies 2022, 15, 5085. 
https://doi.org/10.3390/en15145085 
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interconnect failure leads to cell hotspots and 
increased degradation rates. In some cases, 
interconnect failures could lead to arcing and fires 
based on the module's location in the string: modules 
at a potential further from the ground are more prone 
to arcing. Unfortunately, inverter data cannot detect 
these low power-loss faults, similar to cell cracks. 
However, after a sufficient time, I-V curve data of 
string or module can detect them. 

• Module interconnect failure could occur in the 
module junction box or connectors. These are 
medium to high power loss causing faults that cannot 
be detected by the inverter data. However, the string 
I-V curve helps detect these faults, but not with the 
module I-V curve. These failures could cause a string 
to open-circuit, and thus reduce overall power 
generation. Open-circuited strings can also be 
detected with infrared (IR) imaging techniques. 

Installation Considerations 
The HRMS is not a thoroughly tested and 
commercialized concept. Therefore, a few challenges 
were anticipated in the design, purchasing, and 
installation stage. The following are a few challenges 
expected that need attention at the design stage of 
HRMS.  

• Blocking diodes quality: A blocking diode at both 
positive and negative output terminals of each 
string prevents damage to the HRMS equipment 
when the string is disconnected/reconnected for I-
V curve measurement. However, only a few 
commercial blocking diodes are available in the 
market, and their quality is questionable. 
Moreover, no standards are in place to stipulate the 
testing, evaluation, and certification of blocking 
diodes. In the absence of an international standard, 
an in-house mechanism is needed to test and 
validate the quality before installing them in the 
field.  

• PV module MC connector issues: Module 
connectors are one of the challenges in installing 
the HRMS in an aged PV plant. Disconnecting the 
connectors of aged modules is complex; they may 

be welded after being in the field for years. 
Therefore, care should be taken not to cause 
damage.  

• Meteorological sensors availability and location: 
Availability of irradiance and module temperature 
sensors is critical to the HRMS setup. Moreover, 
the sensor's must be installed as close as possible 
to the HRMS setup for the strings measured.  

• Need for a powerful computer: Deploying CNN 
algorithms into the HRMS setup needs a powerful 
computer to initiate time-based I-V curve scanning, 
collect, process, store, and handle the data, and report 
important metrics to the PV plant operator. Remote 
access is critical to efficiently updating the CNN 
model.     

Cost-economics 

Many factors must be considered in estimating the cost of 
designing, installing, and operating the HRMS setup.  

• The PV plant voltage ratings and location impact the 
voltage rating of the hardware setup. Also, the higher 
the voltage, the more safety measures are included in 
the hardware, further increasing the cost.  

 

 

 

 

 

 

 

 



 Best Practices Guide for Utility-Scale PV Monitoring with Intelligent Diagnostics Using String-Level I-V Curves and Machine Learning 

6 of 6 
  

• The string's current rating impacts the switches 
considered for the string disconnection/reconnection 
operation. Therefore, a combination of electro-
mechanical and semiconductor switches is suitable for 
high-voltage, high-current switching operations. In 
addition, it is important to select hardware that 
minimizes resistive power losses when in the nominal 
state (unswitched). 

• The number of points on the I-V curve does impact 
the memory onboard the HRMS setup, processing 
speeds, and reporting. In addition, handling a high-
density (higher points) I-V curve means a powerful 
processor needs to handle all stages, from initiating 
scanning to the end reporting, which increases the 
cost. Moreover, transferring the high-density HRMS 
data from a remotely located PV plant to the plant 
operator will also increase the data transfer charges. 

LCOE benefits 

Installing an HRMS setup is a cost to the PV plant 
operators. The validity of this cost depends on the ability of 
HRMS to detect faults in time, reduce losses, and incur 
more benefits. Our LCOE analysis confirms that HRMS is 
a potentially valuable asset in reducing the LCOE of the PV 
plant and adds economic value to the PV plant. The 
assumption here is that the HRMS operates reliably without 
any operational issues. Of course, the LCOE differs based 

on the plant's location, electricity purchasing agreements, 
etc. Also, in a relative comparison with the aerial IR 
imaging method, the widely accepted PV fault diagnostic 
approach is performed periodically or occasionally, 
yielding a comparable LCOE value. But it is on the premise 
that IR imaging accurately detects all types of PV faults, 
but this is not the case.  

Download the Project details and reports 

https://publications.energyresearch.ucf.edu/ 

 
 
 

 

 

 

Figure 3: Comparing the LCOE (left figure) of the different monitoring methods. For example, the “Instant” LCOE shows the 
minimum LCOE when all the faults in the PV plant are cleared as soon as they occur, and “None” LCOE is a worst-case 
scenario which implies no fault detection and no response action. Aerial IR imaging-based LCOE analysis (right plot) is also 
presented. This is based on the premise that IR imaging detects all kinds of faults once they occur, but this is not the case 
in practice. 

Contact Hubert Seigneur, Project PI and Program Director, 
FSEC, UCF at seigneur@ucf.edu 
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